
In:. J. Hrar Muss Transfer. Vol. 36, No. 12, pp. 3099-3105, 1993 0017-9310/93 f6.00+0.00 
Printed in Great Bntain Q) 1993 Pergamon Press Ltd 

Transmittances and frequency characteristics of 
wave and diffusion heat transfer in the flat slab 

JERZY GOtgBIOWSKI and ANDRZEJ JAN JORDAN 

Technical University of Biatystok, 15-893 Bialystok, Poland 

(Received 30 November 1992) 

Abstract-This paper on conduction heat transfer in a slab presents a frequency domain comparison 
between the usual diffusion model and a wave model which includes the effect of non-instantaneous heat 
propagation. This is accomplished using a tranSfer function approach. Additionally, transfer functions 
relating the temperature distribution to heat flux are presented for various cases. The limit frequency, f;,. 
is developed as that frequency below which the difference between the diffusion model and the wave model 
is negligible. Above this frequency, the difference between the two models increases rapidly. The work of 
this paper is an essential generalization of various specific cases found in the previous literature. It also 

refers to previous papers written by the authors [Int. J. Hent Mass Tran@r 36, 1709-1713 (1993)]. 

1. INTRODUCTION 

FOURIER’S law models the dependence between the 
intensity of heat flux and the spatio-temporal dis- 
tribution of temperature 

q= -kgradT. (1) 

Combining equation (1) with the principle of energy 
conservation, we obtain the familiar parabolic heat 

equation 

C?T 
uV*T=~, 

where GI = klpc. 
The physical interpretation of the solutions of equa- 

tion (2) indicates an infinite heat propagation velocity, 
i.e. after excitation there is an immediate thermal reac- 
tion at any arbitrary point of the system. This often 
leads to a significant inaccuracy in the analysis of a 
number of thermal phenomena. A classical example 
here can be an intensive heating of solids by high 
energy thermal impulses of very short time duration. 
Energy fluxes of the type described above also appear 
during commutation of semiconductor elements [l] 
(e.g. thyristor) and are used in the annealing process 
by means of laser beams [2]. Other examples may 
include phenomena of high heat transfer in rarified 
media or in liquid and solid helium, etc. 

Hence, under some circumstances, there is a need 
to remove the inaccuracy of the solution of equation 

(2). For this purpose we use a damped wave heat 
model. Fourier’s law undergoes modification [3] 

ar a*T 
aV2T=-++p--. 

at at* 
(4) 

The solution of the above equation can be interpreted 
as a superposition of damped heat waves propagating 
at a finite velocity a = J(cc/z). 

Examination of the differences between the dif- 
fusion model equations (l), (2) and wave model equa- 
tions (3), (4) is a very important task in basic research 

work. 
Comparative analyses found in other papers refer 

mainly to semi-infinite media [S-8]. 
Due to the difficulty of taking reflected waves into 

consideration, the slabs are investigated less fre- 
quently [9, lo]. The slab configuration is understood 

here as a large, thin plate (Fig. 1). 
It should be noted that in the literature, the analysis 

of the dynamics of heat transfer in the system 
described (semi-infinite and slab) has been limited 
to the time domain only. It is possible to obtain a 

qualitatively different view of the phenomenon by 
analysis in the frequency domain. By using properly 
defined operational transmittances, the spectral 
characteristics of the system can be determined. These 
spectral characteristics play a significant role in the 
analysis of various systems and very often constitute 
the best possible physical description. A good example 
of this is ref. [l 11, which describes probes for meas- 
uring wall fluctuation. 

The present paper is a continuation of earlier papers 
by the authors [6]. 

q = -kgrad T-r% 2, (3) 
2. BASIC DEFINITIONS AND TERMS 

“I 

The slab considered here is heated by two heat 
By combining (3) with the principle of energy con- fluxes penetrating both the front (x = 0) and the back 
servation we obtain a hyperbolic telegraph equa- (x = h) surfaces (Fig. 1). Generally accepted defi- 
tion [4] nition of transmittance requires an introduction of 



NOMENCLATURE 

A(s) any optional function for general I1 relative position of the point in the slab 
solution of transform equation PO heat flux amplitude 

A,(x, w) amplitude characteristics of the 9 vector of the heat flux intensity at point 
slab with respect to the front side (i = I) x and time t, q(x, t)lx 
or back side (i = 2) y,(t) heat flux intensity penetrating the front 

U velocity of heat propagation in the wave side (i = 1) and back side (i = 2) 
model q,(s) Laplace transform of the heat flux 

B(s) any optional function for general penetrating the front side (i = 1) and 
solution of transform equation back side (i = 2) 

b dimensionless time of relaxation g&) Laplace transform of the heat flux at 
c specific heat of the slab period R 
Di(n, j& dimensionless spectral R period of heat flux intensity 

transmittance of the diffusion model with (q,(t) = q,(t+ R)) 
respect to the front side (i = 1) and S complex pulsation, jo0 
back side (i = 2) T space-time distribution of the 

F,(n, j/3) dimensionless spectral temperature in the slab, T(x, f) 
transmittance of the wave model with T(.w, s) Laplace transform of the 
respect to the front side (i = 1) and temperature in the slab with respect to 
back side (d = 2) time 

J frequency t time 
grad (. . .) scalar function gradient IO duration of rectangular impulse 
h thickness of the slab x’ 

j imaginary unit, $7 
geometrical coordinate of the point in the 
slab. 

&(x,3) operational transmittance of the slab 
with respect to the front side (i = 1) and 
back side (i = 2) Greek symbols 

K,(x, S) operational transmittance of the thermal diffusivity 
wave model of the slab with respect to ; dimensionless pulsation 
the front side (i = I) and back side i’ operational coefficient of heat transfer 
(i = 2) 4 apparent variable in the definite 

&(x,s) operational transmittance of the integral 
diffusion model of the slab with respect P density of the slab 
to the front side (i = 1) and back side time of relaxation 
(i = 2) &&, uf) phase chara~te~stics of the slab 

k thermal conductivity of the slab with respect to the front side (i = 1) and 
k&c, 1) impulse response of the slab with back side (i = 2) 

respect to the front side (i = 1) and back w pulsation. 
side (i = 2) 

m factor of proportionality between the 
heat fluxes penetrating the front side Other symbols 
and the back side of the slab (specific V”(. * *) scalar Laplacian operator 
case) 1.X unit vector in the OX direction. 

zero initial conditions. AdditionaIly the linearity of Qx, f) 
the medium has been assumed. The conditions men- Ki(X,$j g 7 (64 
tioned above make it possible to formulate (on the 

$JiM Y~WO 

basis of the superposition principle with respect to the and the back side 
heat fluxes-Fig. 1) a general form of the Laplace 
transform of the temperature [ 121 

% 3) 
K,(x,s) g 7 

q2(4 . 
(6b) 

J,(v)=0 
T(x, s> = K, (.x,s)4, (4 -t- K,(x, s)&(s). (5) Thus defining the transfer function with respect to a 

Figure 2 shows a block diagram which illustrates given surface we assume that the opposite side is 
equation (5). From the above equation we derive also covered with a perfect thermal insulation, In spite of 
the transmittance. formula with respect to the front such an idealization the superposition of (6a) and (6b) 
side : corresponds to a real situation (Figs. 1 and 2). 
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FIG. 1. Heat fluxes q, (t), q_,(t) penetrating the slab of the following parameters : k, y, c, T > 0 (wave model) 
and T = 0 (diffusion model). The superposition principle with respect to the fluxes. 

Determining the transfer functions (6) is very useful 
for the following reasons : ct$$=g+r$ forO<x<h andtaO. (9) 

fi) the dynamic properties of the system are deter- 
mined inde~ndently of the form of the attacking heat 

The boundary conditions are defined by the heating 
technique of the slab 

fluxes qi(t), 
(ii) the values of transfer functions on the imaginary 

axis define the amplitude characteristics 

qto, t> = q1 (t)lx 
q(h, t) = -q*(t)lx for r 3 O. (10) 

Ai(x,w) = Il(,(x,s =jw)l, (74 

and phase characteristics 

#i(x, w) = arg Ki(x,s = jm), where i = 1,2. (7b) 

(iii) Borel’s theorem makes it possible to determine 
the thermal response of the system to the excitation 
of any shape 

The objective of the present study is to determine 
the transmittances (6) and the frequency charac- 
teristics (7) of the system shown in Fig. 1 for several 
heating scenarios. 

Making use of equation (3) equation (10) can be 
represented in the scalar form 

q,(t) = _I;? dq I (0 
-Tdt (11) 

x= 0 

for t 3 0. 

-q2(t) = _~~ dqA0 
+5-g- w 

x=/l 

Considering the definition of the transfer function, 
zero initial conditions with respect to state variables 
(i.e. heat flux, temperature and temperature rate) have 
to be introduced 

q(x, 0) = 0 (13) 

T(x, 0) = 0 for 0 < x ,< h. (14) 

3. TRANSFER FUNCTIONS OF THE SLAB a W, 0 
at =o (151 

Due to the geometry of the system (Fig. I), equation ,=o 

(4) takes the following form A Laplace transfo~at~on with respect to time was 
performed on equation (9) 

FIG. 2. Block diagram of the slab. K, (x, s)-transmittance 
with respect to the front side. K2(x, s)-transmittance with 

respect to the back side. Equation (17) is a second-order, linear, homo- 
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geneous differential equation in x, and the coefficients 
are independent of x. Hence, its solution is 

T(.x, s) = A(s) ch [y(s)x] + B(s) sh [y(s)x], (18) 

Selection of the positive real branch of equation (19) 
ensures a physical solution (i.e. positive temperatures) 
corresponding to Re s 2 0 [13] 

R#“) 3 0. (20) 

In order to specify the functions A(s) and B(s) we also 
perform a Laplace transformation of the boundary 
conditions (1 l), (12) with respect to t 

-(j&J = -_ktp +W,(s) -Y,(O). (22) 
I =I, 

By virtue of equation (13) for x = 0 and x = h and 

considering equation (10) the last terms of the right- 
hand sides of equations (21) and (22) are zero. Hence, 

the boundary conditions of equation (17) are 

di=(x, S) 

dx 
= - ;(l +sz)q,(S), (23) 

1 = 0 

dT(x, S) 

dx 
= ;(I +s7)Ly,(s). (24) 

Y = h 

By equating equations (23), (24) with the temperature 

gradient at either wall from equation (18), the func- 
tions A(s) and B(s) are determined 

(1-t~~) 
A(s) = - 

ch(yh) _ 
ky c - 4 I(S) + 

sh (yh) 

where the abbreviated notation y = y(s) is used. The 
expression for A(s) and B(s) from equations (25) and 
(26) are now inserted back into equation (18), yielding 
an expression for the Laplace transformed tem- 
perature in terms of material parameters and the 
LapIace transformed heat fluxes, q,(s), q2(.s). Then, 
from the transfer function definitions of the trans- 
mittances, equations (6a) and (6b), we arrive at 

K,-,tx 
> 
s> = (1 +s7) ch [y(s)@-41 

b(s) sh Wh] ’ 
(27) 

Kfzcx s> = (1 +s7) ch IYWI 
ky (s) sh iv (+I ’ 

(28) 

where y(s) is defined by equation (19) with the con- 
straint of equation (20). Relation (27) represents the 
transfer function with respect to the front side of the 

slab, whereas equation (28) represents the function 
with respect to the back side of the slab. 

4. SOME SELECTED CASES OF 

TRANSMITTANCE OF THE SLAB 

In a number of specific cases it is possible to intro- 
duce (based on relations (27), (28) and the block 
diagram from Fig. 2) one element transfer function 
with respect to the front side of the slab 

which greatly simplifies definitions (6). 
In the simplification process we make use of various 

hyperbolic trigonometric identities given in ref. [ 141. 

Equal heating sf‘ the slab .from both sides, i.e. 

Yz (4 = Y I b) 

(1 +sz) ch [y(s)(x-OSh)] 

&(x7’) = %a :h [03y(s)h] (30) 

Zero net heat transfer to the slab, i.e. q?(s) = -qt(s) 

Kf(x 

9 
s) = _ (1 +sz) sh MS-“.5h)l 

ky(s) ch [0.5y(s)h] (31) 

Proportional heat ,fluxes penetrating the slab, i.e. 

42(s) = -m4,(s) 

KCx sj = (1+s4 ch[y(s)(h-x)l-m.ch[~(s)xl 
f , 

ky (s) sh hO)hl 
(32) 

where m = constant. 

Heating of the front side by the operational heat ,frux 

4, (s) with adiabatic back side, i.e. g2(s) = 0 

In such a case transmittance is expressed by equa- 
tion (27). After expressing the hyperbolic functions in 

exponential form and multiplying both the numerator 
and denominator by exp (- yh) we obtain 

where y = y(s). It can be easily noted that equation 
(33) can be used as a basis for obtaining all the results 
from ref. [9]. For this purpose it is enough to introduce 
in equation (29) 

4,(s) = Qo or y,(s) = $(I -e~‘Ql) 

for Dirac and rectangular impulses respectively. 

Semi-infinite medium (h + KI) 
Using y(s) as given by equation (19) with the 

constraint of equation (20), ensures mathematical 
correctness of the conversion from the slab to semi- 
infinite medium (h --f co, cf. Fig. 1). In such a case we 
should take the following into consideration : 
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Having made the necessary transformation in equa- 

tion (33) we have 

.exp[_J(‘(‘+i))J. (34) 

a 

Equation (28) tends to zero ash + co upon employing 
the constraint of equation (20). Physically, this is 
because q2(t) = 0. Equation (34) was also obtained in 
an earlier work done by the authors [6]. The formula 
(34) may also be used as a basis for the work [5] 
dealing with linear aspects of heat transfer. To obtain 
the results [5] it is necessary to substitute into equation 

(29) : 

q,(s) = YRO 
1 _e-.*R 

The above remarks also refer to article [8] ifwe express 
4, (s) as a sinusoidal heat flux 

Transmittances of d$iuion heat@ow (T + 0) 
When the thermal relaxation time tends to zero the 

diffusion of heat becomes a limiting case of wave heat 
propagation. Then the propagation velocity J(cz/s) 
becomes infinite. The relation (3) then agrees with 
Fourier’s law (1). In equation (4) the term responsible 
for the wave character of the phenomenon disappears. 
In the above case, on the basis of equations (27) and 
(28), we can determine the transfer function of the 
slab described by the diffusion equation 

&r(x, s) = h2 K,(x, s), (35) 

wherei= 1,2. 
From equation (35) we obtain the desired transfer 

function of heat diffusion with respect to the front 
side of the slab 

(36) 

and with respect to the back side 

Similarly, the results of equation (34) for a semi-infi- 
nite medium become, in the limit as z + 0, 

Kd(x,s) = 9 $exp (-x\i(:)), (38) 
S c( 

which remains in good agreement with the results of 
ref. [6]. 

5. FREQUENCY CHARACTERISTICS OF THE 

SLAB 

The amplitude and phase of the transmittances are 

found by applying equation (7) to the transmittances 
derived for various cases of Sections 3 and 4. The 
transmittances are converted to the frequency domain 
by the substitutions = jw. For convenience, the trans- 
mittances will be recast in nondimensional form. This 
is accomplished by multiplying the transmittances by 
k/h and performing the substitutions : 

n = x/h, 

b = m/h2 

/I = mh2/u, 

where h2/a = const. Hence, equations (27) and (28) 

become 

= JCl +jW) ch [(I -4J(jiOJU +_ibP)l, 

J(.$) sh L/(.$)J(l +.ibP)l 

(39) 

and with respect to the back side 

F,(n,j/3) = k Kf2 

= JCl +jblV ch [nJ(_i&/(l +M)l 

,/(jkO sh [&i/QJ(l +jbP)l . 
(40) 

In the case of the diffusion model the above relations 
are simplified (b = 0) and assume the following form 

D,(n,jb) =iKd, i,jcoF 
( > 

1 ch W -n)J(jLY 
J(jP) sh (J(jD)) 

with respect to the front side, and 

(41) 

1 ch (nJ(jL9) =- 
,/(jP) sh (,/(jP)) 

(42) 

(37) with respect to the back side. 
In order to present the slab characteristics graphi- 

tally, relations (39)-(42) were tabulated for the pos- 
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FIG. 3. Combined amplitude characteristics of wave JP, 1 and 
diffusion ID,1 heat transfer with respect to the back side of 
the slab for the low values of dimensionless pulsation p in 

asymmetrical position (n = 0.75). 

itions in the centre of the slab (n = 0.5) and at 
n = 0.75. 

A typical solid parameters were assumed : 

k=145Wm~~‘K~‘, c=700Jkg-‘Km’, 

p = 2330 kgm-‘, r = lo-” s, h = 0.01 m. 

Secondary parameters for the above values are : 

cr=8.89x10-5m*s-‘, a=942.87msm’, 

h = 8.89x lo-“. 

The results obtained here were presented graphically 
in Figs. 3-5. 
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FIG. 4. Amplitude characteristics of wave IF21 and diffusion 
ID,1 heat transfer with respect to the back side for higher 
values of dimensionless pulsation p in asymmetrical position 

(n = 0.75). 
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FIG. 5. Relative difference between amplitude characteristics 
of wave (lF,l, lF21) and diffusion (/D,l, lD.,[) heat transfer 
as dimensionless pulsation function in symmetrical position 
(n = 0.5) and asymmetrical position (n = 0.75) with respect 

to the front side (IF, I, ID, I) and back side (IFzl, IDll). 

Figure 3 shows the characteristics within the range 
of low and medium frequencies. As can be seen the 
wave model is practically identical with the diffusion 
model. It results from small values of the relaxation 
timeinsolids (lo-‘“-10m4 s) [15]. 

The effect of thermal relaxation is manifested at 
higher frequencies causing an increase of the tem- 
perature field in the slab. Hence for the fast changing 
signals in time the values of the amplitude charac- 
teristics of the wave model are greater than in the 
diffusion model (Fig. 4). 

Relative differences between the hyperbolic and 
parabolic characteristics are presented in Fig. 5. These 
differences are the function of nondimensional pul- 
sation fi. Assuming a 3% difference between the 
characteristics values we obtained (for n x 1) a non- 
dimensional limit pulsation ,Bti = 1.2 x 10’ (f;, = 170 
kHz). Above this limit the difference begins to increase 
rapidly and at fi = 40x 10h (f’= 5.7 MHz), reaches 
almost 100% (Fig. 5). 

6. CONCLUSIONS 

The present paper is a continuation of the article [6] 
and deals with the problems in the frequency domain 
which so far have been described in the time domain 
only (refs. [5, 7.9, lo]). The transmittances (27), (28). 
(36), (37) determined in the paper make it possible to 
describe the Laplace transform (and next the original) 
of the temperature at each point of the analysed slab 
for any arbitrary excitation heat fluxes. The above 
transfer functions are irrational and hyperbolic 
relations of complex pulsation s = jo. Such a non- 
algebraic form is typical of distributed parameter 
systems. 
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Comparing (27) with (36) and (28) with (37) we 
notice that the respective expressions in front of the 
fraction line and the arguments of the hyperbolic func- 
tion differ in the factor 

J(1 +sT)l,,=,, = J(1 +jwz). 

The above is the cause of appearing in the hyperbolic 
model of temperature increases, delay of wave motion 

and wave reflections. They are definitely different 
effects than the ones occurring in the parabolic model. 

An increase of relaxation time causes a drop in the 

velocity of heat propagation and therefore a lower 
limit pulsation /$, (see Section 5). Hence, for such a 
case, we have an increase in the importance of 
accounting for the wave properties of the system. 

The diagram of frequency characteristics (Figs. 3- 
5) was described in Section 5. Formulas (39)-(42) 
point to interdependence of the characteristics on rela- 
tive position n, dimensionless time of relaxation b, and 
on dimensionless pulsation 8. Making use of these 
parameters it is possible to determine harmonically 
variable steady field for b = const. It is also possible 
to determine transient thermal fields, because in papers 
[16], [ 171 calculation methods of transient states on 
the basis of frequency characteristics had been 
described. Hence spectral transmittances (39)-(42) 
give a complete picture of the slab dynamics. 
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